14 resultados para Genes, Fungal

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the yeast Saccharomyces cerevisiae a novel control exerted by TPS1 (=GGS1=FDP1=BYP1=CIF1=GLC6=TSS1)-encoded trehalose-6-phosphate synthase, is essential for restriction of glucose influx into glycolysis apparently by inhibiting hexokinase activity in vivo. We show that up to 50-fold overexpression of hexokinase does not noticeably affect growth on glucose or fructose in wild-type cells. However, it causes higher levels of glucose-6-phosphate, fructose-6-phosphate and also faster accumulation of fructose-1,6-bisphosphate during the initiation of fermentation. The levels of ATP and Pi correlated inversely with the higher sugar phosphate levels. In the first minutes after glucose addition, the metabolite pattern observed was intermediate between those of the tps1Δ mutant and tile wild-type strain. Apparently, during the start-up of fermentation hexokinase is more rate-limiting in the first section of glycolysis than phosphofructokinase. We have developed a method to measure the free intracellular glucose level which is based on the simultaneous addition of D-glucose and an equal concentration of radiolabelled L-glucose. Since the latter is not transported, the free intracellular glucose level can be calculated as the difference between the total B-glucose measured (intracellular + periplasmic/extracellular) and the total L-glucose measured (periplasmic/extracellular). The intracellular glucose level rose in 5 min after addition of 100 mM-glucose to 0.5-2 mM in the wild-type strain, ± 10 mm in a hxk1Δ hxk2Δ glk1Δ and 2-3 mM in a tps1Δ strain. In the strains overexpressing hexokinase PII the level of free intracellular glucose was not reduced. Overexpression of hexokinase PII never produced a strong effect on the rate of ethanol production and glucose consumption. Our results show that overexpression of hexokinase does not cause the same phenotype as deletion of Tps1. However, it mimics it transiently during the initiation of fermentation. Afterwards, the Tps1-dependent control system is apparently able to restrict Properly up to 50-fold higher hexokinase activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most strains of Saccharomyces cerevisiae the mitochondrial gene COX1, for subunit 1 of cytochrome oxidase, contains multiple exons and introns. Processing of COX1 primary transcript requires accessory proteins factors, some of which are encoded by nuclear genes and others by reading frames residing in some of the introns of the COX1 and COB genes. Here we show that the low molecular weight protein product of open reading frame YLR204W, for which we propose the name COX24, is also involved in processing of COX1 RNA intermediates. The growth defect of cox24 mutants is partially rescued in strains harboring mitochondrial DNA lacking introns. Northern blot analyses of mitochondrial transcripts indicate cox24 null mutants to be blocked in processing of introns aI2 and aI3. The dependence of intron aI3 excision on Cox24p is also supported by the growth properties of the cox24 mutant harboring mitochondrial DNA with different intron compositions. The intermediate phenotype of the cox24 mutant in the background of intronless mitochondrial DNA, however, suggests that in addition to its role in splicing of the COX1 pre-mRNA, Cox24p still has another function. Based on the analysis of a cox14-cox24 double mutant, we propose that the other function of Cox24p is related to translation of the COX1 mRNA. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis causes infection by the host inhalation of airborne propagules of the mycelia phase of the fungus. These particles reach the lungs, and disseminate to virtually all organs. Here we describe the identification of differentially expressed genes in studies of host-fungus interaction. We analyzed two cDNA populations of P. brasiliensis, one obtained from infected animals and the other an admixture of fungus and human blood thus mimicking the hematologic events of the fungal dissemination. Our analysis identified transcripts differentially expressed. Genes related to iron acquisition, melanin synthesis and cell defense were specially upregulated in the mouse model of infection. The upregulated transcripts of yeast cells during incubation with human blood were those predominantly related to cell wall remodeling/synthesis. The expression pattern of genes was independently confirmed in host conditions, revealing their potential role in the infection process. This work can facilitate functional studies of novel regulated genes that may be important for the survival and growth strategies of P. brasiliensis in humans. (c) 2006 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is a fungal human pathogen with a wide distribution in Latin America. It causes paracoccidioidomycosis, the most widespread systemic mycosis in Latin America. Although gene expression in P. brasiliensis had been studied, little is known about the genome sequences expressed by this species during the infection process. To better understand the infection process, 4934 expressed sequence tags (ESTs) derived from a non-normalized cDNA library from P. brasiliensis (isolate Pb01) yeast-phase cells recovered from the livers of infected mice were annotated and clustered to a UniGene (clusters containing sequences that represent a unique gene) set with 1602 members. A large-scale comparative analysis was performed between the UniGene sequences of P. brasiliensis yeast-phase cells recovered from infected mice and a database constructed with sequences of the yeast-phase and mycelium transcriptome (isolate Pb01) (https://dna.biomol.unb.br/Pb/), as well as with all public ESTs available at GenBank, including sequences of the P. brasiliensis yeast-phase transcriptome (isolate Pb18) (http:// www.ncbi.nlm.nih.gov/). The focus was on the overexpressed and novel genes. From the total, 3184 ESTs (64.53%) were also present in the previously described transcriptome of yeast-form and mycelium cells obtained from in vitro cultures (https://dna.biomol.unb.br/Pb/) and of those, 1172 ESTs (23.75% of the described sequences) represented transcripts overexpressed during the infection process. Comparative analysis identified 1750 ESTs (35.47% of the total), comprising 649 UniGene sequences representing novel transcripts of P. brasiliensis, not previously described for this isolate or for other isolates in public databases. KEGG pathway mapping showed that the novel and overexpressed transcripts represented standard metabolic pathways, including glycolysis, amino acid biosynthesis, lipid and sterol metabolism. The unique and divergent representation of transcripts in the cDNA library of yeast cells recovered from infected mice suggests differential gene expression in response to the host milieu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dermatophytes are adapted to infect skin, hair and nails by their ability to utilize keratin as a nutrient source. Trichophyton rubrum is an anthropophilic fungus, causing up to 90% of chronic cases of dermatophytosis. The understanding of the complex interactions between the fungus and its host should include the identification of genes expressed during infection. To identify the genes involved in the infection process, representational difference analysis (RDA) was applied to two cDNA populations from T. rubrum, one transcribed from the RNA of fungus cultured in the presence of keratin and the other from RNA generated during fungal growth in minimal medium. The analysis identified differentially expressed transcripts. Genes related to signal transduction, membrane protein, oxidative stress response, and some putative virulence factors were up-regulated during the contact of the fungus with keratin. The expression patterns of these genes were also verified by real-time PCR, in conidia of T. rubrum infecting primarily cultured human keratinocytes in vitro, revealing their potential role in the infective process. A better understanding of this interaction will contribute significantly to our knowledge of the process of dermatophyte infection.